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Abstract

Recent evidence suggests that visuospatial attentional performance is not sta-

ble over time but fluctuates in a rhythmic fashion. These attentional rhythms

allow for sampling of different visuospatial locations in each cycle of this

rhythm. However, it is still unclear in which paradigmatic circumstances

rhythmic attention becomes evident. First, it is unclear at what spatial loca-

tions rhythmic attention occurs. Second, it is unclear how the behavioural rel-

evance of each spatial location determines the rhythmic sampling patterns.

Here, we aim to elucidate these two issues. Firstly, we aim to find evidence of

rhythmic attention at the predicted (i.e. cued) location under moderately infor-

mative predictor value, replicating earlier studies. Secondly, we hypothesise

that rhythmic attentional sampling behaviour will be affected by the behav-

ioural relevance of the sampled location, ranging from non-informative to fully

informative. To these aims, we used a modified Egly-Driver task with three

conditions: a fully informative cue, a moderately informative cue (replication

condition), and a non-informative cue. We did not find evidence of rhythmic

sampling at cued locations, failing to replicate earlier studies. Nor did we find

differences in rhythmic sampling under different predictive values of the cue.

The current data does not allow for robust conclusions regarding the non-cued

locations due to the absence of a priori hypotheses. Post-hoc explorative data

analyses, however, clearly indicate that attention samples non-cued locations

in a theta-rhythmic manner, specifically when the cued location bears higher

behavioural relevance than the non-cued locations.
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1 | INTRODUCTION

In our everyday life, we continually encounter more
visual stimuli than our brain is able to process. Visuospa-
tial attention allows us to spatially select behaviourally
relevant stimuli from cluttered visual environments.
Classical interpretations of visuospatial attention, such as
the spotlight analogy (Cave & Bichot, 1999; Eriksen & St
James, 1986; Posner et al., 1980), have largely ignored the
temporal dynamics of spatial attention. Visuospatial atten-
tion is often studied using spatial cueing paradigms (Egly
et al., 1994; Fan et al., 2002; Posner, 1980). These para-
digms assume that visuospatial attention uninterruptedly
monitors a certain behaviourally relevant location.

The conception that sustained attention is a continu-
ous process, however, has been challenged in recent
years (Fiebelkorn et al., 2013; Landau & Fries, 2012;
VanRullen et al., 2007). Visual attentional performance
has been shown to fluctuate, whereby the likelihood of
detecting a given stimulus increases and decreases over
time (Fiebelkorn et al., 2013; Fiebelkorn &
Kastner, 2019). This waxing-and-waning of attentional
performance follows a rhythmic pattern, predominantly
at the theta (7–8 Hz) frequency (VanRullen, 2018). These
rhythmic attention cycles seem to operationalise a rhyth-
mic sampling of the visual environment. Hence, a
sequential sampling of visual stimuli or spatial locations
is possible during periods of heightened perceptual sensi-
tivity (Fiebelkorn & Kastner, 2019). This phenomenon
has been found in different types of attention (e.g. covert
attention and overt attention; Fiebelkorn et al., 2013;
Helfrich et al., 2018; Landau & Fries, 2012; Re
et al., 2019; Song et al., 2014) using a variety of study
designs. Furthermore, evidence from neurophysiological
studies indicates a tight link between rhythmic sampling
during attentional fluctuations and neuronal oscillations,
both in humans and in non-human primates (Fiebelkorn
et al., 2018, 2019; Spyropoulos et al., 2018). Electroen-
cephalography (EEG) studies show that detection perfor-
mance of attended stimuli is predicted by both alpha and
theta oscillations in the visual cortex (Busch &
VanRullen, 2010; Mathewson et al., 2009). These findings
have been further corroborated by studies employing
MEG (Landau et al., 2015) and TMS (Dugué et al., 2016)
showing further evidence of the role theta-rhythmic mod-
ulations of visual attention. Studies on non-human pri-
mates have found that rhythmic neural activity in higher
order cortical areas such as the FEF (Fiebelkorn
et al., 2018, 2019; Gaillard et al., 2020) and in visual areas
(Spyropoulos et al., 2018) relates to rhythmic attentional
behaviour. For a recent full review on converging neuro-
physiological evidence of rhythmic attention sampling,
see Gaillard and Ben Hamed (2020).

The variable landscape of study designs does not eas-
ily allow to compare results across studies. Indeed, stud-
ies show strong discrepancies in their results. Some
studies have found rhythmic sampling effects at locations
that were probed by a spatial cue (Helfrich et al., 2018;
Landau & Fries, 2012), some studies only found effects at
non-cued locations (Peters et al., 2020; Senoussi
et al., 2019), and some found effects at both cued and
non-cued locations (Fiebelkorn et al., 2013). Also, the
reported frequency of rhythmic sampling is not consis-
tent across studies, with frequencies ranging from 2 to
12 Hz (Landau & Fries, 2012; Song et al., 2014). Thus,
although evidence of rhythmic sampling can be found
across multiple behavioural paradigms, there is no broad
consensus. Therefore, there is a strong need for consis-
tent study designs and results, and the replication of key
findings within this field is necessary, especially consider-
ing that many results obtained in this field of research
might go unnoticed due to the so-called ‘file drawer’
effect, where negative results remain unpublished
(VanRullen, 2013).

Two seminal studies have demonstrated the existence
of rhythmic fluctuations in attentional performance using
a modified version of the Egly–Driver task (Fiebelkorn
et al., 2013; Helfrich et al., 2018). This task involves
detecting a target that can appear at one end of one bar
(i.e. the cued location), or at the other end of that same
bar (i.e. space-based, non-cued location), or at the
equidistant end of another bar (object-based, non-cued
location) (Egly et al., 1994). Fiebelkorn et al. (2013) found
evidence of rhythmic sampling at the cued and non-cued
locations (Fiebelkorn et al., 2013). Although rhythmic
sampling at the cued location occurred at 8 Hz (with
another non-significant peak found at 4 Hz), the atten-
tional sampling frequency at the non-cued location
depended on the location of the target. Namely, sampling
of the non-cued target within the same object, the other
end of the bar, occurred at a frequency of 8 Hz, whereas
sampling between objects, the non-cued target at the
other bar, happened at a lower rate of 4 Hz (Fiebelkorn
et al., 2013). From this study, it appears that attention
samples the cued location at approximately 8 Hz, but also
periodically samples other locations where a target could
appear. Helfrich et al. (2018) followed up on this study.
Using a similar task design, they showed that behavioural
oscillations in detection accuracy on the Egly–Driver task
tightly map onto neural oscillations in the frontoparietal
dorsal attention network (Helfrich et al., 2018). With
respect to the specific nature of the found behavioural
oscillations, they did not find an 8-Hz peak at the validly
cued location. Instead, they found that rhythmic sam-
pling occurred within a broad frequency range around
4 Hz (the peak was only visible after alignment of all
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subjects’ individual spectral peaks). Rhythmic sampling
at the non-cued locations was not examined in their
study. In summary, there is a discrepancy between the
exact frequency range of the effect at the cued location.
Moreover, both studies show low effect sizes for this
effect at the cued location. Another study, investigating
rhythmic sampling in working memory, did not find any
effect at the cued location (Peters et al., 2020). Given the
importance of these studies and the relevance for
the field, it is crucial to understand whether, and at what
frequency, the effects occur at the cued location.

Within the behavioural rhythmic sampling literature,
it has repeatedly been found that the frequency of behav-
ioural oscillations depends on the amount of
behaviourally relevant locations in the visual field
(Holcombe & Chen, 2013; VanRullen, 2016). Namely,
attention seems to sample one object after the other at an
�8-Hz frequency, resulting in a split of this �8-Hz sam-
pling frequency over the total amount of behaviourally
relevant locations (Fiebelkorn et al., 2013; Jans
et al., 2010; VanRullen, 2016). For instance, Landau et al.
(2012) found that two locations were each visually
tracked at a �4-Hz rhythm, where the fluctuating pattern
of detection accuracy at one location was the anti-phase
pattern of that of the other location. This suggests that
attention samples the two locations one after the other,
where each location is attended to at every second sam-
pling moment. Furthermore, when tracking two moving
objects, each object is sampled at �3–4 Hz, but when
tracking three objects, the sampling frequency declines to
�2.3 Hz (Holcombe & Chen, 2013). However, none of
these studies contain a probabilistic cue, which renders
one location more relevant than another. This cue is key
in the Egly–Driver task to modulate endogenous atten-
tion, but it could potentially modulate the exact fre-
quency of the rhythmic pattern at which attentional
sampling occurs.

In endogenous attentional paradigms, spatial cues
often function as a means to render spatial locations
behaviourally relevant. The informativeness of the spatial
cue, the cue validity, is the likelihood that the cue cor-
rectly predicts an upcoming stimulus. A spatial cue dic-
tates the behavioural relevance of a certain location, that
is, the extent of attentional resources devoted to that loca-
tion. A very informative cue promotes sustained attention
at one location, whereas a non-informative cue promotes
the direction of attention towards multiple locations
(Chou & Yeh, 2018). Cue informativeness can be regu-
lated by changing the number of trials where a cue val-
idly predicts an upcoming stimulus. A fully informative
cue should prompt all attentional deployment towards
the cued location and leave little to no attentional
resources to sample away towards other locations. If 8 Hz

is the fundamental rhythmic sampling frequency, then
this should lead to sampling only at the cued location, at
approximately 8 Hz. A less informative cue, on the other
hand, would lower the behaviour sampling frequency
(Gaillard et al., 2020). We hypothesise that a low cue
informativeness (validity) would motivate observers to
adopt a strategy where attentional resources are equally
divided over locations, leading to more occasional
switches from the cued object to the non-cued object. We
therefore expect a predominant 4-Hz component in the
power spectrum, indicating a regular and frequent sam-
pling back and forth between the cued and non-cued
locations (which is then also effectively sampled at 4 Hz).
Note that we expect a 4-Hz and not a �2-Hz sampling
frequency even though in the Egly–Driver task three
locations have to be sampled, because the results in
Fiebelkorn et al. (2013) clearly indicate that the fre-
quency split in the Egly–Driver task was only based on
objects, and not locations. The notion that attentional
switches away from the cued object to the non-cued
object occur more frequently after non-informative cues
than after informative cues has been discussed by
Fiebelkorn and Kastner (2019).

In this study, we investigated rhythmic sampling of
attention using a modified Egly–Driver task (after
Fiebelkorn et al., 2013; Helfrich et al., 2018). Firstly, we
aimed to investigate whether there is evidence of rhyth-
mic sampling, and at what frequency, at the cued loca-
tion. We expect to demonstrate evidence of rhythmic
sampling around either 4 Hz or 8 Hz (or both), as
reported in Fiebelkorn et al. (2013) and Helfrich
et al. (2018). Secondly, we investigated whether the fre-
quency of rhythmic sampling at the cued and non-cued
locations depends on the informativeness of the cue. If
behavioural relevance of spatial locations, manipulated
by cue informativeness, indeed influences rhythmic
attentional sampling, we should see a predominant
�4-Hz cued-location sampling at low cue informative-
ness and predominant �8-Hz sampling at high cue
informativeness.

2 | METHODS

2.1 | Participants

In total, 32 participants (mean age: 23.0, range: 19–28,
19 females) participated in the study. All participants
were right-handed and had normal or corrected-to-
normal vision. Five participants were excluded due to a
high number of blinks and/or saccades (>20%), and one
participant was excluded due to outlying behavioural per-
formance (z > 3). The study was approved by the Ethics
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Review Committee Psychology and Neuroscience
(ERCPN) at Maastricht University, The Netherlands
(ethical approval number: OZL- 177_03_03_2017_S12),
and in concordance with the World Medical Association
Declaration of Helsinki. All participants gave their writ-
ten informed consent before participating in the study.
Participants were compensated for their time with a
monetary reward or participation credits.

2.2 | Procedure and experimental design

Participants performed a variant of the Egly–Driver task,
modified to investigate detection performance across dif-
ferent cue-to-target interval bins (Egly et al., 1994;
Fiebelkorn et al., 2013; Helfrich et al., 2018). Participants
were seated in front of a PC monitor in a lightly dimmed
room. Viewing distance was kept stable at 57 cm from
the monitor by means of a chin rest. We performed
video-based monocular eye tracking at 1000 Hz with the
EyeLink 1000 system (SR Research, Mississauga, Ontario,
Canada). A standard 9-point calibration and validation
procedure was used to calibrate the eye tracker. After cal-
ibration of the eye tracker, participants were familiarised
with the task using a practice block (60 trials, on 80% cue
informativeness). Participants were asked to maintain fix-
ation on a centralised fixation dot throughout each trial
and to blink only after their response.

Trials started with a 300-ms fixation period, after
which two peripheral white bars (size 4.4 � 22�, at 8.8�

eccentricity) appeared on the screen, oriented either hori-
zontally or vertically (Figure 1a). After a variable delay of
400–800 ms, a spatial cue (a black line around the one
end of one bar, thickness 0.5�, area of coverage 4.4 � 4.4)
appeared for a duration of 100 ms. The spatial cue
predicted with varying probabilities (depending on the
cue informativeness condition; see below) where the tar-
get would appear. The target was a small change in lumi-
nance on one end of one bar (size 4.4 � 4.4�), which
appeared for a duration of 100 ms. Cue-to-target intervals
were binned between 500 and 1683 ms in steps of
�16.7 ms (equivalent to display refresh rate). The trial
distributions were pseudorandomly constructed so that
each interval bin contained four validly cued trials. Cue-
to-target intervals were randomly distributed across the
experiment. Participants were asked to press a button on
a response box (with the right hand) if they detected the
target and to refrain from responding if no target was
detected. There was a window of 1500 ms where
responses were recorded. Target detection performance
was titrated at 80% (similar to Helfrich et al., 2018 by
adjusting the target luminance every 15 trials in steps of
1 RGB value (max. 255 [white])—thus, when

performance was below 80%, the RGB value was
increased by 1 and vice versa. The starting RGB value
was 250. Task stimuli were presented on a gamma-
corrected Iiyama ProLite monitor with an aspect ratio of
1920 � 1080 and a refresh rate of 60 Hz. Stimuli were
programmed using the Psychophysics Toolbox
(PsychToolbox; Brainard, 1997) in MATLAB
(MathWorks, Version 2018b).

Our task consisted of three different cue informative-
ness conditions (see Figure 1b). The moderately informa-
tive cue condition involved identical cue parameters as in
Helfrich et al. (2018). Here, the cue indicated the correct
location of the target in 80% of the cued trials. During
invalid trials (20%), targets could either appear at the
other end of the cued location on the same bar (10%) or
at the other bar at a location equidistant from the cued
location (10%). Next to this, we introduced two other con-
ditions. First, we added a non-informative condition in
which the cue correctly predicted the location of the tar-
get in 33% of the cued trials. The probability that the
target would appear at the cued location or either of the
other two non-cued locations was, thus, equal. Second,
we added a fully informative condition in which the cue
always predicted the location of the target in cued trials;
thus, the distribution was 100% validly cued trials versus
no invalidly cued trials. In each condition, we added a
small number of catch trials (10%) on top of these valid–
invalid trial distributions. Catch trials, in which a cue
was shown but no target appeared, were meant to keep
the participants engaged. We divided the session into six
blocks—two blocks for each cue informativeness type.
The order of the cue informativeness conditions was
counterbalanced across participants. Each condition con-
sisted of 288 valid trials, so the number of invalid (non-
cued) trials differed in each condition (non-informative
cue: 864 trials, moderately informative cue: 72 trials), as
well as the total number of trials (non-informative cue:
950 trials; moderately informative cue: 396 trials; fully
informative cue: 317 trials). Valid (cued) trials were
equally divided over the 72 cue-to-target interval bins,
which resulted in four valid trials per bin. Invalid
(non-cued) trials were randomly divided over the cue-
to-target interval bins (thus, on average, there were
eight trials per bin in the non-informative cue condition
and one trial per bin in the moderately informative
condition). Before each block and in every small break
(after 50 trials), participants were informed about the
current cue informativeness percentage to encourage
them to adopt an appropriate attentional strategy.

To allow us to directly replicate the behavioural find-
ings of Helfrich and colleagues, our moderately informa-
tive cue condition involved nearly identical task
parameters and data preprocessing and analysis (see next
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section), apart from the following: (1) Trials started auto-
matically, and not at button press, in order to increase
the flow of the experiment, (2) we used an eye tracker to
filter out and discard saccades and eye blinks, (3) partici-
pants were informed about the cue informativeness per-
centage, and (4) we vastly increased the number of trials
and the number of participants (originally seven partici-
pants [main experiment] or 14 participants [control
experiment], mean of 190 trials) (Helfrich et al., 2018).
Note, however, that the number of trials is substantially
lower than reported in an earlier study with a similar par-
adigm by Fiebelkorn et al. (2013).

2.3 | Data preprocessing

Data were preprocessed and analysed using custom
Python scripts. A total of five participants, for which the
number of rejected trials due to blinks and saccades
exceeded 20%, were excluded from the analysis. Two par-
ticipants were excluded due to a z-score above 3 in any
behavioural performance measure (detection accuracy or
reaction time), as it suggests not complying with the
instructions. We removed all trials that were contami-
nated by saccades (exceeding 2� of visual angle) or eye
blinks using an automatic detection algorithm. This algo-
rithm detected the presence of blinks or saccades from
the epoched eye-tracking data. The critical time window
for trial exclusion ranged from cue onset until target
onset (thus, trial lengths varied). This ensured that
behavioural effects were not confounded by breaks of

central fixation during the cue–target interval and that
volunteers indeed performed covert and not overt shifts
of spatial attention. On average, 5.4% � 5.3% of the trials
(mean � standard deviation [SD]; 82.1 � 81.0 trials,
range 0.2%–20.0%) were rejected (valid [cued] trials:
5.4% � 5.3% [47.0 � 46.2 trials], invalid [non-cued]
trials: 5.4% � 5.5% [35.2 � 35.7 trials]; mean � SD).

2.4 | Data analysis

To recreate the course of hit rates (Egly–Driver task) over
the entire cue-to-target interval, we followed the
preprocessing steps by Helfrich et al. (2018). First, we
calculated the average hit rates over a window of 50 ms.
We then slid this window forward over the entire
cue-to-target interval, in steps of 1 ms. We smoothed the
raw time course using a boxcar rolling average with a
window size of 25 ms. A representational time course can
be found in Figure 1c. Next, we applied a Hanning
window and zero-padded the time course to a length of
10 s. In order to analyse the power across the frequency
spectrum, we applied a fast Fourier transform (FFT) over
these preprocessed time courses.

For our first aim, we examined whether there is
rhythmic sampling at the cued location and at which
frequencies. Power spectra were first tested for significant
peaks using non-parametric permutation testing at
subject and group levels. We constructed a surrogate
distribution of power spectra. To that aim, we first ran-
domised the hits and misses in each time bin across the

F I GURE 1 Overview of methods. (a) Schematic overview of a single trial. Trials started with the appearance of a central fixation dot,

that participants were asked to fixate on throughout the trial. Horizontally or vertically oriented bars appeared after 300 ms and were

showed for a variable duration between 400–800 ms, after which a cue appeared for 100 ms. After a variable cue-to-target interval

(500–1700), the target (a slight change in luminance) was shown for 100 ms. Participants were asked to press a button promptly upon target

detection. (b) Schematic overview of cue informativeness conditions and likelihood of target appearance (in %) on each possible location.

The moderately informative condition is a replication of Helfrich et al. (2018). On top of these valid-invalid trial distributions, 10% of catch

trials were added. (c) Illustrative behavioural time course of detection accuracy across the cue-to-target interval, at the cued location, for one

typical participant
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cue-to-target interval for each participant. Then, for 1000
iterations, we conducted the same steps as described
above. At subject level (for each participant individually),
we determined the p-value per frequency, represented by
the proportion of values of the surrogate distribution that
exceeds the power at that particular frequency. The fre-
quency with the highest p-value above the confidence
level (P < 0.05) between 2 and 10 Hz served as the peak
frequency for that participant. At group level, we took
two approaches to compare the observed data against the
surrogate distribution. First, we constructed a group dis-
tribution of surrogate data by averaging the individual
surrogate data by each permutation. We then determined
the proportion of values of the group-averaged surrogate
distribution that exceeds the group-averaged power spec-
trum (i.e. the p-value). Second, we ran a paired-samples
t-test between the observed data and the medians of the
power spectrum of the individual surrogate distributions.
All p-values were corrected for multiple comparisons
using the false discovery rate (FDR) procedure
(Benjamini & Hochberg, 1995).

Furthermore, we used two additional spectral analysis
methods as per Helfrich et al. (2018). Both of these ana-
lyses include a group alignment of individual spectral
peaks to account for the fact that the exact spectral peak
frequency potentially could not be consistent over partici-
pants. First, we z-scored the power spectrum relative to
the median and the SD of the surrogate distribution and
selected the frequency with highest z-value, in the range
of 2–10 Hz, as individual peak frequency (IPF). Second,
we used Irregular Resampling Auto-Spectral Analysis
(IRASA; Wen & Liu, 2016) to separate the oscillatory
component from the fractal component (1/f activity) in
the signal. We used a time window of 75% of the total sig-
nal and a step size of 50 ms. We applied IRASA to both
the observed time series and permuted time series. We
then selected the frequency where the oscillatory compo-
nent maximally exceeded the fractal component. For
both of these analysis methods, we aligned the individual
power spectra according to the found peak frequencies.
Subsequently, we compared the aligned observed data
against the median aligned surrogate data using a paired-
samples t-test.

For our second aim, we examined whether cue infor-
mativeness altered rhythmic sampling behaviour. Firstly,
to determine whether cue informativeness significantly
affected overall perceptual accuracy, a 2 � 3 repeated
measures analysis of variance (RM ANOVA) was con-
ducted with factors LOCATION (cued, same-object non-
cued and different-object non-cued) and CONDITION
(moderately informative and non-informative). The fully
informative condition could not be included in this anal-
ysis, because it lacks non-cued trials. To analyse the other

two cue informativeness conditions (fully informative
and non-informative cues), we repeated the above-
mentioned spectral peak identification analyses
(i.e. subject-level permutation testing, group-level permu-
tation testing, paired samples of observed data vs. the sur-
rogate distribution, group alignments based on z-scoring
and IRASA).

As an extra analytical step, in order to provide more
evidence for specific null or alternative hypotheses, we
used the Bayesian framework for t-tests, as proposed by
Rouder et al. (2009). Using JASP (JASP Team, 2020), we
conducted Bayesian paired-samples t-tests between the
observed power spectra and the medians of the surrogate
power spectra for each cue validity condition and at each
target location separately. We first averaged the power at
predetermined peaks, namely, at 4 Hz (between 3.5 and
4.5 Hz) and at 8 Hz (between 7.5 and 8.5 Hz), which we
based on previous studies (Fiebelkorn et al., 2013;
Helfrich et al., 2018). The null hypothesis (H0) poses that
around those predetermined peaks, there is no difference
between the observed power and the power of the surro-
gate distribution; the alternative hypothesis (HA) states
that the observed power is higher than the power of the
surrogate distribution. The Bayesian analysis compares
the likelihood of the data fitting under HA (Hypothesis 1)
versus H0 (Hypothesis 1), resulting in the Bayes factor
(BF). A BF10 of 3, for example, indicates that the data are
three times more likely to fit under HA than under H0

(Wagenmakers et al., 2018). A BF10 of 1 indicates no evi-
dence, 1–3 anecdotal evidence, 3–10 moderate evidence
and 10–30 strong evidence for HA (for a full overview, see
Wagenmakers et al., 2018). We always assigned a Cauchy
prior distribution with r = 1/√2 to our analyses.

We also determined the effects of rhythmic sampling
at the non-cued locations (i.e. same-object and different-
object locations) and compared these effects across the
moderately informative and non-informative conditions.
This comparison was not possible in the fully informative
condition due to a lack of non-cued trials. We con-
structed time series for the non-cued location in the same
manner as the cued location (see above), except that we
used a longer sliding window of 100 ms, to accommodate
for the scarcity of trials. In the moderately informative
cue condition, there were more trials (i.e. 288) in the
cued than in the non-cued locations (i.e. 36 at each loca-
tion), impeding direct comparison across locations. To
overcome this, we took 10 samples of 36 hits and misses
amongst the validly cued trials, created a time series for
each sample (see above) and averaged these into one time
series. Within each condition, for each location sepa-
rately, we compared the observed data against the surro-
gate data using the two non-parametric testing analyses
described above ([1] score the group-averaged power
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spectrum against a group-averaged surrogate distribution,
and [2] perform a paired-samples t-test of individual
power spectra vs. the medians of individual surrogate dis-
tributions). We also investigated whether the significant
effects at the pooled non-cued locations in the moderated
informative cue condition could not be explained by an
autocorrelation in the behavioural time course
(Brookshire, 2021). We used the Monte Carlo singular
spectrum analysis (SSA) method, originally proposed by
Allen and Smith (1996), to differentiate the signal from
aperiodic background activity. In this analysis, Monte
Carlo simulations are used to estimate the expected spec-
tral signal based on coloured AR(1) (autoregressive
model with 1 positive coefficient) noise. To reduce our
spectral resolution (unnecessary for this analysis), we
down-sampled our time course to 50 Hz. SSA was per-
formed with a sliding window of 20 samples using the
Broomhead and King estimation (Broomhead &
King, 1986). We used source code for the python imple-
mentation of the SSA available at https://github.com/
VSainteuf/mcssa.

Finally, as a robustness check, we ran simulations to
see what effect we would be able to statistically reveal
using the current trial amount of four trials per bin. To
this aim, we simulated data of 26 participants and a range
of 1–10 trials per bin in steps of one trial per bin. We sim-
ulated trials with hits or misses and cue–target interval
bins (72 in total, ranging stepwise between 500 and
1700 ms). Per trial, we randomly sampled between hit
(1) and miss (0), where the probability of sampling a
hit (Phit) was defined by a 4-Hz sinusoid with the follow-
ing formula:

Phit ¼ 0:8þβ b sin 2π 4 ið Þ

where b is the effect size (amplitude) ranging from 0.0 to
0.2, in steps of 0.02, and where i denotes the cue–target
interval. We introduced interindividual variability β,
based on the results that we found at the cued location in
the moderately informative cue condition. The coefficient
of variation at 4 Hz in the power spectrum was �0.5
(0.54 precisely). For each participant, we randomly drew
β from a distribution where mean = 1 and SD = 0.5. The
probability of a miss (Pmiss) is Phit � 1. Individual vari-
ability in underlying frequency (4 Hz) is not taken into
account in these simulations. We created 500 distributions
of hits and misses and one surrogate distribution of
500 permutations per participant. Then, we ran these dis-
tributions through our analysis pipeline: construction of
behavioural time series, zero padding, applying a
Hanning window and performing an FFT. For each effect
size, trial per bin and each of our 500 simulations, we
scored the group-averaged simulated data against a

surrogate distribution. The surrogate distribution was
created by analysing, in the same pipeline, 500 distribu-
tions of 80% hits (1) and 20% misses (0).

3 | RESULTS

3.1 | No evidence of rhythmic attention
at the cued location

For our first aim, we investigated if there is evidence of
rhythmic sampling at the cued location, and at which fre-
quency, in an Egly–Driver task. Overall reaction time for
this condition was 467 � 45 ms (mean � SD). In our
experiment, detection accuracy was aimed to be titrated
at �80%, using an adaptive staircase procedure, as per
Helfrich et al. (2018). The actual observed detection accu-
racy at moderate cue informativeness was 78.52%
(�2.89%), which is only slightly but significantly lower
than 80% (t25 = �2.56, P = 0.014).

On a subject level, we assessed whether the individual
spectral power exceeded the 95th percentile of the surro-
gate distribution, at any frequency in the range between
2 and 10 Hz (see Figure 2a for a representational power
spectrum). This was the case for only four participants,
where the mean peak frequency lied outside the theta
band (at 9.1 Hz). On average, the highest spectral peak
was found at the �85th percentile (84.96%) of the surro-
gate distribution, at a frequency of 4.64 � 2.79 Hz (see
Figure S2).

At group level, we scored the mean spectral power
against the group-averaged surrogate distribution (see
Figure 2b). The spectral power did not exceed the 95th
percentile at any frequency (Pmin,uncorr. = 0.44 at 2.0 Hz).
As a second means of comparing against the surrogate
distribution, we ran a paired-samples t-test against the
median of the individual surrogate distributions. Here,
we found no significant spectral peaks either
(Pmin,uncorr. = 0.52 at 2.0 Hz). In order to investigate the
extent of evidence for the null hypothesis, we ran a
paired-samples t-test under the Bayesian framework for
spectral peaks at 4 and 8 Hz. Based on Fiebelkorn et al.
(2013), who found a significant peak around 8 Hz, and
Helfrich et al. (2018), who found a significant peak
around 4 Hz, our HA at both of these peaks stated that
the observed data are greater than the median surrogate
distribution. We found a BF01 of 7.20 at 4 Hz (i.e. the data
are 7.20 times more likely to fall under H0 than HA) and
a BF01 of 17.35 at 8 Hz, indicating moderate and strong
evidence for H0, respectively.

Furthermore, we used two peak alignment methods
as per Helfrich et al. (2018). First, we z-scored the power
against the median and SD of the permutations and
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selected the highest z-scores for each participant between
2 and 10 Hz (see Figure S1 for individual plots). Using
this method, we found a mean peak frequency of �5 Hz
(4.67 � 2.81 Hz). This peak was not significant, with a
z-score of 1.28 � 0.56 (Figure 2c). Second, we used
irregular resampling (IRASA) to filter out the fractal
(1/f) component of the signal. Between 2 and 10 Hz, the
power spectrum exceeded the fractal component maxi-
mally at an average frequency of 4.64 � 2.07 Hz. Once
again, we constructed an aligned power spectrum around
the IPF (see Figure 2d). As any peak will naturally arise
due to the alignment to the maximum peak frequency
over subjects, we need to correct for this in our statistical
test. Therefore, we ran each permutated time series (see
Section 2) through the IRASA procedure and identified

peaks for each permutation. Subsequently, we compared
the aligned observed data against the median aligned
surrogate data (peak at 5.24 � 0.08 Hz) using a paired-
samples t-test (see Figure 2d). At the spectral peak, the
aligned observed power spectrum was significantly lower
than the aligned surrogate power spectrum (t25 = �2.81,
P = 0.009).

3.2 | No influence of cue
informativeness on rhythmic attention at
the cued location

As our second aim, we investigated whether the existence
and extent of rhythmic attentional sampling depend on

F I GURE 2 Finding evidence of rhythmic attentional sampling behaviour at moderate cue predictability (replication of Helfrich et al.

(2018). (a) Representational single-subject power spectrum (in black) after applying a Fast Fourier Transform (FFT) on the behavioural time

courses (e.g. as in Figure 1c). One method of determining the presence of distinct peaks is by comparing each subject’s power spectrum to

the subject’s surrogate distribution (95th percentile in red, dotted), created by permuting the hits and misses 1000 times across the cue-to-

target interval. (b) Group-averaged power spectrum (in black, mean � SEM) and 95th percentile of group-averaged surrogate distribution

(c) Aligned power spectrum (mean � SEM) after z-scoring each individual power spectrum against the median and SD of the permutations

and taking the highest z-score as individual peak frequency (IPF). The red dotted line denotes statistical significance (i.e. a z-score of 1.645).

(d) Aligned power spectrum (mean � SEM, in black) after applying irregular resampling (IRASA) to extract the 1/f (fractal) component. The

individual peak frequency (IPF) is the frequency at which the power spectrum maximally exceeds this 1/f component. As an additional

control, we constructed aligned power spectra of the randomly permuted data and performed a paired-samples t-test against the median

aligned power spectra (mean � SEM, in red) per frequency. The observed aligned spectral peak is significantly lower than the surrogate

aligned peak (** denotes p < 0.01)
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the informativeness of the cue. First, we assessed whether
overall detection accuracy at each (cued and non-cued)
location was dependent on the informativeness of the cue
using a 2 � 3 RM ANOVA (Condition � Location). Data
were normally distributed, as assessed by a Shapiro–Wilk
test (P > 0.05 for all combinations). A Greenhouse–
Geisser correction was applied due to violation of the
sphericity assumption. Detection accuracy was
significantly different across both LOCATION
(F1.91,0.05 = 12.43, P < 0.001) and CONDITION
(F1,0.06 = 24.33, P < 0.001), as well as the
LOCATION � CONDITION interaction term
(F1.62,0.05 = 11.56, P < 0.001). See Figure 3a. Post hoc
analyses revealed that detection accuracy did not differ
significantly across target locations within the non-
informative cue condition. In contrast, within the moder-
ately informative (80%) cue condition, detection accuracy
at both the same object (0.73, 95% CI [0.04, 0.11],
P = 0.001) and the different object (0.11, 95% CI [0.08,
0.14], P < 0.001) was significantly lower than at the cued
location. There was no significant difference in detection
accuracy at the same object versus at the different object
(0.37, 95% CI [�0.02, 0.09], P = 0.17). These results indi-
cate that we successfully altered behavioural perfor-
mance by altering the informativeness of the cue. Note
that there was no significant difference at the cued loca-
tion between the cue informativeness conditions, as
expected, because detection accuracy was always titrated
at �80%.

We repeated the above-mentioned spectral peak iden-
tification methods to assess attentional rhythmicity at the
cued location across our different cue informativeness
conditions (for fully informative cue and non-informative
cue, see Figure 3b,c). Scoring subject by subject against
the surrogate distribution yielded no significant spectral
peaks (fully informative cue: 87.36% at 5.09 � 2.55 Hz;
non-informative cue:82.78% at 6.43 � 2.58 Hz). There
were also no significant spectral peaks on a group level,
neither according to a paired-samples t-test of the
observed power spectrum against the medians of the per-
mutations (fully informative cue: Pmin,uncorr. = 0.14 at
3.5 Hz; non-informative cue: Pmin,uncorr. = 0.77 at 6.6 Hz)
nor when scoring the observed data against a group-
averaged surrogate distribution spectral peaks (fully
informative cue: Pmin,uncorr. = 0.14 at 3.6 Hz; non-
informative cue: Pmin,uncorr. = 0.62 at 6.6 Hz). In order to
assess the evidence for the null hypothesis, we also ran a
Bayesian paired-samples t-test to compare the spectral
power of the observed data to the median of the surrogate
distribution. As mentioned in the introduction, we have a
directional HA for the fully informative cue condition at
8 Hz, stating that the observed data are greater than the
median surrogate distribution, and a non-directional HA

at 4 Hz, stating that the observed data are different than
the median surrogate distribution. We found a BF01 of
2.94 at 4 Hz and a BF01 of 4.61 at 8 Hz, indicating
anecdotal and moderate evidence for H0, respectively. For
the fully informative cue condition, our hypotheses are
reversed: HA at 8 Hz states that the observed data are
different than the median surrogate distribution, whereas
HA at 4 Hz states that the observed data are greater than
the median surrogate distribution. Here, we found a BF01
of 13.16 at 4 Hz (i.e. the data are 13.16 times more likely
to fall under H0 [no difference] than HA) and a BF01 of
2.72 at 8 Hz, indicating strong and anecdotal evidence for
H0, respectively.

We also did not find evidence for attentional rhyth-
micity using the two spectral peak alignment methods
after Helfrich et al. (2018). We z-scored against the mean
and SD of the permutations (fully informative cue: a
z-score of 1.56 � 0.15 [mean � SEM] at a mean peak fre-
quency of 5.09 � 2.55 Hz [mean � SD]; non-informative
cue: a z-score of 1.31 � 0.16 [mean � SEM] at a mean
peak frequency of 6.43 � 2.61 Hz [mean � SD]). See
Figures S3 and S4 for power spectra aligned around the
identified spectral peaks for both additional conditions.
Using IRASA, we found spectral peaks around �5 Hz for
both conditions (fully informative: 5.25 � 0.48 Hz; non-
informative: 5.69 � 0.49 Hz), but the power at the subse-
quently aligned peaks was not significantly higher than
the median of the surrogate aligned peaks (fully informa-
tive cue: t25 = 0.34, P = 0.74) or was even significantly
lower (non-informative cue: t25 = �2.47, P = 0.02; see
Figures S3 and S4).

Our simulation showed that from four trials per cue–
target interval bin onwards (the number of trials per bin
used in our study) and a P-value cut-off of 0.001, the
power would be 80% for effect sizes as low as 0.04,
corresponding to a sinusoidal function of detection accu-
racy varying between 0.78 and 0.82. With 10 trials per
bin, we would have reached a power of >80% (i.e. 100%)
with an effect size as low as 0.04. A heatmap of the pro-
portion of significant tests for each effect size and trial
per bin combination, for different cut-off values,
(P < 0.05, P < 0.01 and P < 0.001) can be found in
Figure S5.

3.3 | Characteristics of rhythmic
attention at non-cued locations

We were also interested in whether the effects of cue
informativeness might become visible at the non-cued
locations, instead of the cued locations. Therefore, we
decided to analyse time course and spectral power at the
non-cued locations using location-specific permutation
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testing, after Fiebelkorn et al. (2013). Note that the data
can only be considered for exploratory analysis. Due to
the low number of trials per bin at the non-cued locations
in the moderately informative cue condition (our focus
was on the cued conditions), we cannot construct a time
course that is similarly reliable as is the original study by
Fiebelkorn and colleagues. Descriptively, there is no
phase opposition visible as was the case in Fiebelkorn
et al. (2013) (see the blue and yellow time courses in
Figure 4b). To investigate whether the power spectra of
these time courses contained any spectral peaks, we
scored the group-level spectral power between 2 and
10 Hz against the group-averaged surrogate distribution

within each cue informativeness condition and for
each location separately. We did not observe any
significant spectral peaks (i.e. spectral power exceeding
the 95th percentile of the surrogate distribution) at
any location within the non-informative cue condition
(cued: Pmin,uncorr. = 0.527 at 9.3 Hz; same object:
Pmin,uncorr. = 0.10 at 5.4 Hz; different object:
Pmin,uncorr. = 0.60 at 6.00 Hz). In contrast, the indication
for attentional rhythmicity at the non-cued locations was
higher when the cue was moderately informative.
Namely, in the moderately informative condition, we
observed a spectral peak around �3 Hz at the different-
object location, which was not significant after

F I GURE 3 Rhythmic attention at other cue conditions. (a) Perceptual accuracy at cued and non-cued locations for each cue

informativeness condition. Within the moderately informative cue condition, but not within the non-informative cue condition, detection

accuracy at both the same object and different object was significantly lower than at the cued location. Triple asterisks (***) denote statistical

significance with p < 0.001. (b–c) Power spectra (mean � SEM, in black) for time-resolved behavioural estimates of detection performance at

the cued location for the noninformative cue condition (b) and the moderately informative cue condition (c). Dotted lines denote the 95th

percentile of the surrogate distributions
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corrections for multiple comparisons (2.7–3.5 Hz,
Pmin,uncorr. = 0.02 at 3.2 Hz, Pmin,FDR = 0.42). Moreover,
although a spectral peak at �7–8 Hz is visible at the
same-object location, it is not significant either
(Pmin,uncorr. = 0.10 at 7.6 Hz). There was no distinctive
spectral peak at the cued location (Pmin,uncorr. = 0.40 at
4 Hz). We repeated our analysis after first averaging the
time series at each location and constructing one power
spectrum of this averaged time course. We did not find
any significant peaks after scoring this power spectrum
against a surrogate distribution (all Pmin,uncorr. > 0.8).
Thus, although the insufficient number of non-cued trials
and the low statistical power as a result of it hamper ade-
quate interpretation of the results, these results seem,
descriptively, consistent with the most prominent result
of Fiebelkorn and colleagues (2013).

The behavioural time courses showed a phase-
consistent pattern for the two non-cued locations in the
moderately informative cue condition. Thus, we pooled

the time courses across these two locations (see
Figure 4). Once again, we scored the data against the
against the group-averaged surrogate distribution of hits
and misses at the pooled, non-cued locations. We found
a distinct, significant spectral peak at 7–8 Hz
(Pmin,FDR < 0.001), specifically between 7 and 8.3 Hz.
Our effects were still significant after correcting for
autocorrelated (AR(1)) noise (P < 0.001 for 7.2–7.5 Hz)
(see Figure S6). When we repeated the same analysis
for the non-informative cue, we did not find any signifi-
cant effects (all P > 0.05). Finally, to verify that we did
not have evidence of opposing phase effects for both
non-cued locations (same-object vs. different-object
locations) as previously found by Fiebelkorn et al.
(2013), we again pooled across the non-cued locations
but changed the polarity of the different-item location.
Any phase opposition should enlarge any sinusoidal
modulation by this subtraction. No significant effects
were found (all P > 0.05).

F I GURE 4 Time-resolved behavioural estimates of detection accuracy (mean � SEM) at the cued (in grey) and non-cued locations

(pooled data, in brown), and the same-object non-cued (in yellow) different-object non-cued (in blue) locations, for the noninformative cue

condition (a) and the moderately informative cue (replication) condition (b). Note the pronounced waxing-and-waning pattern of perceptual

performance at the non-cued locations in the moderately informative cue condition (in b). (c–d) location-specific power spectra for the
noninformative cue condition (c) and the moderately informative cue condition (d) (gey: cued location, brown: non-cued locations (pooled

data), yellow: same-object location, blue: different-object location). Dotted lines in corresponding colours denote the 95th percentile of the

surrogate distributions. Triple asterisks (***) denote statistical significance with p < 0.001
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4 | DISCUSSION

Recent studies have suggested that visuospatial atten-
tional performance is not continuous, but rhythmically
fluctuates, reflected by a heightening and lessening of
perceptual sensitivity. It is thought that these heightened
periods of perceptual sensitivity allow for attentional
shifts from one spatial location to another. This rhythmic
attentional sampling mechanism expresses itself as a
rhythmic pattern of behavioural performance
(e.g. detection accuracy) at each separate spatial location.
Here, we investigated rhythmic attention at the validly
cued location in a modified Egly–Driver task. As previ-
ously reported in studies employing this task (Fiebelkorn
et al., 2013; Fiebelkorn et al., 2018; Helfrich et al., 2018),
and a similar task version in monkeys (Fiebelkorn
et al., 2018, 2019), we expected to demonstrate evidence
of rhythmic attention around either 4 or 8 Hz, or both. In
addition, we also tested for a possible effect of the behav-
ioural relevance of the sampled location, comparing three
conditions: a fully informative cue, a moderately infor-
mative cue and a non-informative cue. Using several dif-
ferent peak identification methods, we found no
significant rhythmic attentional sampling at the cued
location. Our null results are further corroborated by
hypothesis testing in the Bayesian framework that unilat-
erally point towards evidence for the absence of an effect.
Our manipulation of cue type did show a main effect of
cue informativeness on overall behavioural accuracy (see
Figure 3). However, we found no differences in spectral
power at the cued location across cue informativeness
conditions as a result of this modification. The spectral
patterns of detection accuracy at the non-cued (i.e. same-
object and different-object) locations, in the moderately
informative cue condition, bear similarities with
Fiebelkorn et al. (2013) although the low number of trials
in this condition and the absence of a specific a priori
hypothesis impeded us from drawing robust conclusions.
Interestingly, however, when inspecting behavioural per-
formance pooled across both non-cued locations, a highly
significant and distinct 7- to 8-Hz pattern of rhythmic
attentional sampling was revealed for the moderately
informative cue condition. These patterns were not pre-
sent for the non-informative cue condition.

In an earlier study using a modified Egly–Driver task,
Fiebelkorn et al. (2013) found effects at the cued location
(at �8 Hz), but the most prominent effects were found at
the non-cued locations. In a similar paradigm, Helfrich
et al. (2018) found significant rhythmicity in attention
(at �4 Hz) at the cued location. They focused only on the
cued location, because a sufficient number of trials to
analyse non-cued locations were not feasible in their
(ECoG) study. In contrast to these two studies, our study

failed to find pronounced effects at the cued location but
did found significant effects at the non-cued location.
Another recent study assessing behavioural rhythmicity
in an object-based versus space-based paradigm also
found no significant performance fluctuations at the cued
location (Peters et al., 2020). In this study, it was
suggested that attention clearly prioritises the cued loca-
tion when the cue renders a location behaviourally rele-
vant. As a result of this, attention never fully switches
away from the cued location so that, consequently, no
rhythmicity in behaviour can be found there (Lou
et al., 2020; Peters et al., 2020). In certain moments, the
authors argue, attention swiftly sweeps across the object
towards the non-cued location on the same object; in
other moments, it is distributed across the cued and the
non-cued location on the different object. It could be that
rhythmicity in attention becomes visible only when
attention needs to swiftly reorient to lesser relevant loca-
tions and back to the most relevant location, as has been
previously found (Senoussi et al., 2019). This notion
seems consistent with our results at non-cued locations,
suggesting that following an informative cue, attention
seems to rhythmically monitor the two non-cued loca-
tions at 7–8 Hz. It is also consistent with our results in
the non-informative cue condition, in which there seem
to be no rhythmic sampling effects at any (cued or non-
cued) location. We speculate that, in that case, no
reorienting of attention is necessary, as each location
bears similar behavioural relevance or attentional weight
as the other location. Note that this is in the absence of a
very salient cue, such as a flash stimulus (as used in
Landau et al., 2012), which could serve as a sampling
starting point, even though it is non-informative.

Our results of an attentional sampling at non-cued
locations in the behaviourally relevant cue condition fits
well with findings reporting that the 7- to 8-Hz frequency
is most often found when attention is undivided and
directed to one location only, as found in electrophysio-
logical studies (Busch et al., 2009; Busch &
VanRullen, 2010). Curiously, whereas earlier studies
found that non-cued locations on the same object and the
different object were sampled in an anti-phasic pattern
(Fiebelkorn et al., 2013; Peters et al., 2020), we rather
found a phase-consistent pattern in this study.

We expected to see a shift of the rhythmic sampling
frequency at the cued location when the behavioural rele-
vance of the cue disappears. Namely, once the informa-
tive value of the cue disappears, non-cued locations
should be given more attentional weight. This would
result in a loss of the detection accuracy benefit at the
cued location, which normally occurs when the cue is
behaviourally relevant (Chou & Yeh, 2018; He
et al., 2004). Indeed, our overall behavioural results
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clearly show that the benefit of the cue dissipates when
the cue becomes non-informative. There is a clear detec-
tion accuracy gain at the cued location compared with
the non-cued location in circumstances where the cue
carries information. This performance benefit disappears
completely after a non-informative cue, where detection
accuracy at each location is equal. It is proposed that the
less relevant a cue is, the more attentional saccades there
are to be expected towards other locations (Fiebelkorn &
Kastner, 2019). A completely non-informative cue ren-
ders all locations equally relevant for attention, resulting
in a systematic one-by-one rhythmic sampling of all pos-
sible locations (Jia et al., 2017). Indeed, in a task that
requires monitoring two equally relevant locations, each
location seems to be sampled in alternation, each at a
�4-Hz rhythm (Landau & Fries, 2012; Re et al., 2019;
VanRullen, 2016). We successfully managed to manipu-
late attentional weight that is allocated to the cued versus
non-cued locations, as shown by the significant differ-
ence between the average accuracy at the non-cued loca-
tions versus the cued location in the moderately
informative condition and no difference in the informa-
tive cue condition. However, attentional rhythmicity at
the cued location seems to be unaffected by the informa-
tiveness of the cue. The differential effect of a location’s
attentional weight on rhythmic attention towards that
location may play a role in the vast dispersion of reported
frequencies in rhythmic attention paradigms.

Several methodological factors should be discussed in
light of our null results at the cued location. First, by
losing its informative character, a cue might fail to struc-
turally reset the brain’s rhythmic sampling pattern. A
non-informative cue could still be salient enough to reset
spatial sampling, for example, when it is a bright flash
(Landau & Fries, 2012), but when it is not, it might not
be enough to reset spatial sampling when it bears no
attentional weight. This could explain the absence of
evidence for attentional rhythmicity at any (cued or
non-cued) location during the non-informative condition.
The ability of the cue to reset the brain’s overt attentional
sampling is a necessary prerequisite for reliably
evaluating fluctuations in detection accuracy in a
behavioural paradigm (VanRullen, 2016). Indeed, it is
established that salient stimuli, such as a loud noise, reset
ongoing neuronal oscillations (Lakatos et al., 2008). A
‘flash’ event that is salient enough clearly initiates a
reliable object-to-object attentional sampling pattern that
always starts at the flashed location (Landau &
Fries, 2012). In line with this notion, in the present study,
we could have used a more salient, briefly flashing exoge-
nous cue to increase our confidence that we reliably reset
the attentional sampling phase in each trial. Another
option would have been to use an auditory stimulus

concurrently with the visual cue (Fiebelkorn et al., 2011;
Lakatos et al., 2007).

Second, detection accuracy was titrated at �80% in
the present study, after Helfrich et al. (2018). We wonder
whether this percentage was sensitive enough in our
sample, as other studies tend to use lower thresholds
(Busch & VanRullen, 2010; Fiebelkorn et al., 2013). Even
though Helfrich et al. (2018) adjusted the detection
threshold to �80% (to keep subjects engaged), they found
similar effects when running an identical task in a con-
trol sample. The main issue with a high detection thresh-
old is a ceiling effect of detection performance,
compromising the exposure of the highest potential
amplitude of attentional fluctuations. This would result
in behavioural oscillations that are lower in amplitude or
that are capped, which would hamper adequate inspec-
tion of power-frequency components in the behavioural
time courses.

Third, rhythmic attentional sampling paradigms need
a vast number of trials in order to construct time-resolved
behavioural estimates of detection performance across
cue–target intervals. We were able to reliably estimate
effects at the cued location, as we had 288 validly cued
trials to perform this analysis. This number is consider-
ably higher than the study by Helfrich et al. (2018),
which had �137 validly cued trials on average. To gain
additional insight into this matter, we ran simulations
across combinations of different trials per bin and effect
sizes. Here, we found that with an effect size (amplitude
of underlying sinusoidal function) of down to 0.04, we
found a statistical power of 95% at P < 0.05. Even though
these simulations assume that fluctuating patterns of per-
formance are equally present and equally measurable in
all participants, they indicate that the current number of
cued trials could detect an effect size that we deem rele-
vant (a sinusoidal accuracy modulation between 0.78 and
0.82). Nevertheless, a higher number of trials would have
contributed to more robust results for two main reasons.
Firstly, the lower the trial number, the more noise
emerges into the data, arising from momentary lapses in
attention and responses that are unrelated to the rhyth-
mic fluctuations in attention that is subject to the main
measurement. Secondly, if we had aimed at doing a com-
prehensive and reliable analysis of the results of all fac-
tors and conditions, it would have been necessary to
consider adjusting the study to contain sufficient number
of cued and non-cued trials. For example, Fiebelkorn
et al. (2013), where analysis of effects at the non-cued
locations was included, used �388 non-cued trials, com-
pared with 72 in this study. Thus, though the number of
trials in this study was sufficient to draw conclusions on
rhythmic attention at cued locations, it was likely not suf-
ficient to confidently draw conclusions about rhythmic
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attention at non-cued locations for the moderately infor-
mative condition. Adding more trials would furthermore
have allowed us to determine hemifield-specific effects,
which have been found in other paradigms (Landau &
Fries, 2012).

Fourth, a related issue that could have brought more
noise into the data is caused by the fact that trials were
not self-initiated. Self-initiated trials would have allowed
for more frequent breaks by the participant, for example,
when they feel fatigued or overwhelmed by the task. The
automatically induced trials in this study might have
introduced more noise due to decreased attentional perfor-
mance caused by fatigue. However, we did introduce very
frequent breaks, after every 50 trials (around 2.5 min), all-
owing the participant to take as long a break as desired.

Fifth, the addition of an electrophysiological tech-
nique would have provided more insight and evidence in
the phenomenon of rhythmic attention in this study.
Using electrophysiology, it is possible to directly link
behavioural performance (e.g. detection accuracy) with
neuronal processes, as has been shown before
(Fiebelkorn et al., 2018; Helfrich et al., 2018). This not
only sheds more light on the neural correlates of rhyth-
mic attentional sample but additionally allows for a trial-
by-trial analysis of the data (as opposed to relying on
across-trial, aggregated performance).

There is no clear consensus on methods to analyse
the spectral dynamics of behavioural oscillations
(Helfrich et al., 2018; Zoefel et al., 2019; Zoefel &
Sokoliuk, 2014). In this study, we used several
approaches to find meaningful spectral peaks. We used
permutation-based approaches, where the observed
power on each frequency is compared to a surrogate dis-
tribution (Fiebelkorn et al., 2013; Helfrich et al., 2018).
We also used an approach where we separated the oscil-
latory activity from the 1/f background activity using
IRASA and subsequent alignment of the highest oscilla-
tory power above the 1/f background (Helfrich
et al., 2018; Wen & Liu, 2016). The 1/f signal, also called
pink noise, is a widely occurring phenomenon in natural
and biological systems, where power tends to fall off with
increasing frequency. As such, it is a known component
of neurophysiological signals (He, 2014). The behavioural
time series in this study are an aggregation of averaged
performance at time points; therefore, it does not resem-
ble a naturally occurring, continuous measurement.
However, 1/f noise has been previously found in similar
artificially constructed time series of cognitive perfor-
mance (Gilden et al., 1995; Kello et al., 2010;
Wagenmakers et al., 2004). Thus, there is still good rea-
son to believe that there is a distinct 1/f component pre-
sent in our behavioural signal. However, it could still be
fruitful to explore other means of quantitatively analysing

spectral peaks based on the 1/f component. One of
these other methods, FOOOF (Fitting Oscillations &
One-Over-F), allows more elaborate modelling of the
1/f signal through more extensive parameter setting
(Donoghue et al., 2020). It proposedly overcomes a prob-
lem that occurs using IRASA, where oscillations with a
large amplitude are difficult to separate from the signal
(Donoghue et al., 2020). Thus, in studies into behavioural
oscillations, it is necessary to carefully consider the
suitability of the spectral peak detection method.

Behavioural or electrophysiological spectral group
data can be attractively displayed using spectral peak
alignment (as in Helfrich et al., 2018; see also Holt
et al., 2019; Richter et al., 2017). In our study, even
though we did not find effects at the individual level,
aligned peaks still provided a strong visual impression
that spectral peaks were present (Figure 2c,d). However,
statistical analyses suggest the opposite. We showed that
peak alignment after z-scoring the observed data against
the surrogate data, and the IRASA procedure, in both
cases did not resulted in a statistically significant peak.
Performing the IRASA procedure over randomised data
yielded an aligned peak that was higher than the aligned
peak of the observed data. This shows that whereas peak
alignment is a visually attractive means of presenting
group data, it might result in a false impression that spec-
tral peaks are present in the data. Therefore, it is neces-
sary to conduct and report statistical evidence of the
relevance of the group-aligned spectral peak in question.

Above all, the current study illustrates that a robust
method of evaluating rhythmic attentional sampling in
behavioural paradigms still ought to be found. There is a
strong need to deduct the vast variability in paradigms
and move towards more standardised ways of collecting
data of rhythmic behavioural studies. For example, a sys-
tematic way (i.e. salient flash) to reset the ongoing atten-
tional sampling phase could be implemented in most
behavioural paradigms. The effect of this phase-resetting
event could be further warranted by electrophysiological
findings. Another question is whether dichotomous data
(e.g. detection accuracy) or continuous data (e.g. reaction
times) better capture rhythmic variability in behaviour.
Both types have been used in rhythmic attention para-
digms (Fiebelkorn et al., 2013; Landau & Fries, 2012;
Peters et al., 2020). Furthermore, there is still no consen-
sus on the best way to identify peaks in power spectra
that result from behavioural time courses.

In conclusion, we found no effect of rhythmic atten-
tion, nor effects of behavioural relevance of a cue on
rhythmic attention, at the cued location. We did find
indications of periodic attentional sampling towards non-
cued locations, with effects occurring specifically when
the cue renders one location behaviourally relevant
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(i.e. it is informative). These attentional switches seem to
occur systematically, in a theta-rhythmic fashion. How-
ever, these results are not suitable for drawing robust
conclusions due to the absence of a priori expectations
and the low number of trials in this condition.

The attentional weight of an object or location that is
required in the wide landscape of rhythmic attention par-
adigms might play a role in the vast differences that are
observed in rhythmic sampling frequency. However,
more research needs to be conducted to the exact role of
a spatial location’s attentional weight on rhythmic sam-
pling. Other open questions concern the causes of inter-
individual variability in sampling frequency and what
role rhythmic attention serves amongst other attentional
processes.
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